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Abstract 
 
As a result of recent technological innovations, there has 
been a tremendous growth in the Electronic Music 
Distribution industry. In this way, tasks such us automatic 
music genre classification address new and exciting 
research challenges. 

Automatic music genre recognition involves issues 
like feature extraction and development of classifiers 
using the obtained features.  

As for feature extraction, we use the number of zero 
crossings, loudness, spectral centroid, bandwidth and 
uniformity. These features are statistically manipulated, 
making a total of 40 features.  

Regarding the task of genre modeling, we train a 
feedforward neural network (FFNN) with the Levenberg-
Marquardt algorithm. 

A taxonomy of subgenres of classical music is used. 
We consider three classification problems: in the first one, 
we aim at discriminating between music for flute, piano 
and violin; in the second problem, we distinguish choral 
music from opera; finally, in the third one, we aim at 
discriminating between all the abovementioned five 
genres together. 

We obtained 85% classification accuracy in the 
three-class problem, 90% in the two-class problem and 
76% in the five-class problem. These results are 
encouraging and show that the presented methodology 
may be a good starting point for addressing more 
challenging tasks.  
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1. Introduction 
 
Presently, whether it is the case of a digital music library, 
the Internet or any music database, search and retrieval is 
carried out mostly in a textual manner, based on categories 
such as author, title or genre. This approach leads to a 
certain number of difficulties for service providers, 
namely in what concerns music labeling. Real-world 
music databases from sites like AllMusicGuide or 
CDNOW grow larger and larger on a daily basis, which 
requires a tremendous amount of manual work for keeping 
them updated. 

Thus, simplifying the task of music database 
organization would be an important advance. This calls for 
automatic classification systems. Such systems should 
overcome the limitations resulting from manual song 
labeling, which may be a highly time-consuming and 
subjective task. 

Some authors have addressed this problem recently.  
Tzanetakis and Cook [12] classify music in ten genres, 
namely, classical, country, disco, hip-hop, jazz, rock, 
blues, reggae, pop and metal. They further classify 
classical music into choir, orchestra, piano and string 
quartets. Features used encompass three classes: timbral, 
rhythmic and pitch-related features. The authors 
investigate the importance of the features is training 
statistical pattern recognition classifiers, particularly, 
Gaussian Mixture Models and k-nearest neighbors. 61% 
accuracy was achieved for discriminating between the ten 
classes. As for classical music classification, an average 
accuracy of 82.25% was achieved. Golub [2] uses seven 
classes of mixed similarity (a capella, celtic, classical, 
electronic, jazz, latin and pop-rock). The features used are 
loudness, spectral centroid, bandwidth and uniformity, as 



 

well as statistical features obtained from them.  A 
generalized linear model, a multi-layer perceptron and a k-
nearest classifier were used. The best of them achieved 
67% accuracy. Kosina [5] classifies three highly dissimilar 
classes (metal, dance and classical) using k-nearest 
neighbors. The used features were mel-frequency cepstral 
coefficients, zero-crossing rate, energy and beat. 88% 
accuracy was achieved. Martin  [6] addresses the problem 
of instrument identification. He proposes a set of features 
related to the physical properties of the instruments with 
the goal of identifying them in a complex auditory 
environment. 

In our work we aim at classifying five subgenres of 
classical music, namely, opera, choral music and music for 
flute, piano and violin. This is due to the fact that there are 
not many studies regarding specifically classical music. 
Also, digital music libraries have a great diversity of 
taxonomies of classical music, which demonstrates its 
practical usefulness. Unlike other authors who use a broad 
range of generic classes, we chose to focus on specific set 
of related classes. This seems to be a more challenging 
problem since our classes show a higher similarity degree, 
leading to, we think, a more difficult classification 
problem. We chose a set of features based on those used in 
[13] and [2], encompassing especially timbre and pitch 
content, which seemed relevant for the task under 
analysis: the number of zero crossings, loudness, spectral 
centroid, bandwidth and uniformity. Rhythmic features 
were not used. An FFNN classifier is used, which is 
trained via the Levenberg-Marquardt algorithm. For 
validation purposes we obtained 76% accuracy in the five-
class problem. Our results, though far from ideal, are 
satisfactory. Comparing to [12], we got a similar accuracy 
using one more category and a reduced feature set. 

This paper is organized as follows. Section 2 
describes the process of feature extraction and the features 
used. In Section 3, a short overview of FFNNs and their 
application to our music genre recognition problem is 
presented. Experimental results are presented and 
analyzed in Section 4. Finally, in Section 5 some 
conclusions are drawn, as well as possible directions for 
future work. 
 
2. Feature Extraction 
 
Based on the classification objectives referred, and taking 
into account the results obtained in similar works, we gave 
particular importance to features with some significance 
for timbral and pitch content analysis. We used no 
rhythmic features, since they did not seem very relevant 
for the type of music under analysis.   However, we plan 
to use them in the future and evaluate their usefulness in 
this context.  

We started by selecting 6 seconds’ segments from 
each musical piece (22khz sampling, 16 bits quantization, 
monaural). Since for training issues the segment samples 
used should have little ambiguity regarding the category 
they belong to, we selected relevant segments from each 
piece. The purpose was not to use long training samples. 
Instead, short significant segments are used, mimicking 
the way humans classify music, i.e., short segments [8] 
using only music surface features without any higher-level 
theoretical descriptions [7]. 

After collecting a relevant segment for each piece, 
the process of feature extraction is started by dividing each 
6s signal in frames of 23.22 with 50% overlap. This 
particular frame length was defined so that the number of 
samples in each frame is a power of 2, which is necessary 
for optimizing the efficiency of Fast Fourier Transform 
(FFT) calculations [11] (Section 2.2). This gives 512 
samples per frame, in a total of 515 frames. 

Both temporal and spectral features are used, as 
described below.  

 
2.1. Time-Domain Features 
 
As for temporal features, we use loudness and the number 
of zero crossings. Loudness is  a perceptual feature that 
tries to capture the perception of sound intensity. Only the 
amplitude is directly calculated from the signal. Loudness, 
i.e., the perception of amplitude, can be approximated as 
follows [2] (1): 
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where L denotes loudness, r refers to the frame number, N 
is the number of samples in each frame, n stands for the 
sample number in each frame and x(n) stands for the 
amplitude n-th sample in the current frame. 

The number of zero crossings simply counts the 
number of times the signal crosses the time axis, as 
follows [13] (2): 
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where Z represents the number of zero crossings. This is a 
measure of the signal frequency content, which is 
frequently used in music/speech discrimination and for 
capturing the amount of noise in a signal [12]. 
 

 
 



 

2.2. Frequency-Domain Features 
 
The spectral features used, computed in the frequency 
domain, are spectral centroid, bandwidth and uniformity. 
Therefore, the process starts by converting the signal into 
the frequency domain using the Short-Time Fourier 
Transform (STFT) [9]. In this way, the signal is divided in 
frames, as stated above. The signal for each frame is then 
multiplied by a Hanning window, which is characterized 
by a good trade-off between spectral resolution and 
leakage [11]. 

Spectral centroid is the magnitude-weighted mean of 
the frequencies [2] (3): 
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where C(r) represents the value of the spectral centroid at 
frame r and Mr(k ) is the magnitude of the Fourier 
transform at frame r and frequency bin k . This is a 
measure of spectral brightness, important, for instance, in 
music/speech or musical instrument discrimination. 

Bandwidth is the magnitude-weighted standard 
deviation of frequencies [2], as follows (4): 
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where B(r) represents the spectral bandwidth at frame r. 
This is a measure of spectral distribution: lower bandwidth 
values denote a concentration of frequencies close to the 
centroid (which is the energy-weighted mean of 
frequencies), i.e., a more narrow frequency range. 

Uniformity gives a measure of spectral shape. It 
measures the similarity of the magnitude levels in the 
spectrum and it is useful for discriminating between 
highly pitched signals (most  of the energy concentrated in 
a narrow frequency range) and   highly unpitched signals 
(energy distributed across more frequencies) [2]. 
Uniformity is computed as follows (5): 
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For each frame, the five features described are extracted. 
Then, first-differences are calculated, based on the feature 
values in consecutive frames, e.g., L(r) - L(r-1). These five 
new features plus the five features described before 
constitute our set of 10 basis features. 

Classical music is usually characterized by 
accentuated variations in the basis features throughout 
time. Therefore, statistical manipulations of the basis 
features are calculated in order to cope with this aspect.  

The means and standard deviations for the ten basis 
features are calculated in 2 seconds’ chunks, leading to 20 
features. The final features that compose the signature 
correspond to the means and standard deviations of the 20 
intermediate features computed previously. We get a total 
of 40 features (2×2×10). 
 
 
3. Genre Modelling with FFNNs 
 
Artificial Neural Networks (ANN) [4] are computational 
models that try to emulate the behavior of the human 
brain. They are based on a set of simple processing 
elements, highly interconnected, and with a massive 
parallel structure. ANNs are characterized by their 
learning, adapting and generalization capabilities, which 
make them particularly suited for tasks such as function 
approximation.  

Feedforward Neural Networks (FFNN) are a special 
class of ANNs, in which all the nodes in some layer l are 
connected to all the nodes in layer l-1. Each neuron 
receives information from all the nodes in the previous 
layer and sends information to all the nodes in the 
following layer. A FFNN is composed of the input layer, 
which receives data from the exterior environment, 
typically one hidden layer (though more layers may be 
used [10]) and the output layer, which sends data to the 
exterior environment (Figure 1). 

The links connecting each pair of neurons are given 
some weight, w. This attribution of weights to links is the 
job of any training algorithm, as described below. Each 
neuron computes an output value based on the input 
values received, the weights of the links from the neurons 
in the previous layer and the neuron’s activation function. 
Usually, sigmoid functions are used [4]. 
The capability of the FFNN for mapping input values into 
output values depends on the link weights. Their optimal 
determination is still an open problem. Therefore, iterative 
hill-climbing algorithms are used. Their main limitation 
comes from the fact that only local optima are obtained: 
only occasionally the global optimum can be found. In the 
context of ANNs, these iterative optimization algorithms 
are called training algorithms. 

 



 

 
Figure 1. FFNN used on the classification of music in 

three mu sical genres (flute, piano and violin). 
 
ANNs are usually trained in a supervised manner, 

i.e., the weights are adjusted based on training samples 
(input-output pairs) that guide the optimization procedure 
towards an optimum. For instance, in the case of our 
music genre classification, each network input is a vector 
with the 40 extracted features and each target value has a 
value of 1 for the correct class and a value of 0 otherwise 
(Figure 1). Our FFNN is trained in batch mode, i.e., all the 
training pares are presented to the network, an error 
measure is computed and only then the weights are 
adjusted towards error reduction. In Figure 1, we have a 
40×120 input matrix where each line corresponds to a 
particular feature and each column corresponds to each 
music feature-vector used for training the network. In the 
same figure, a 3×120 target output matrix is presented, 
where each column has information regarding the target 

class for the corresponding music feature-vector: all the 
lines have zero value, except for the line corresponding to 
the correct class, which has a value of one. For example, if 
the Tth music signature denotes a piano piece, and the 
second output neuron was assigned to the piano category, 
then the Tth ouput column would have a value of 1 in the 
second line, and zero for all other lines. 

The most widely used training algorithm for FFNNs 
is backpropagation [4]. Here, there is a forward pass 
where inputs are presented to the network and output 
values are computed. The error between each target value 
and the corresponding output value is then calculated. 
Then, a backward pass is performed, where the weights 
are adjusted towards error reduction, using the gradient 
descent method. This process is repeated iteratively until 
the error is below a given threshold.  

The gradient descent method has some limitations 
regarding convergence properties: the algorithm can get 
stuck in a local minimum and the selection of the learning 
rate is usually not trivial (if its value is too low, learning is 
slow; if it is too high, the network may diverge). 
Therefore, some variants are used, e.g., learning with a 
momentum coefficient or defining an adaptive learning 
rate [4].  

Here, we use the Levenberg-Marquardt algorithm, 
which has the advantage of being significantly faster (10 
to 100 times faster [1]) at the cost of higher memory 
consumption, due to the computation of a Jacobian matrix 
in each iteration. Also, this algorithm converges in 
situations where others do not [3]. 

After training, the neural network must be validated, 
i.e., its response to unknown data must be analyzed in 
order to evaluate its generalization capabilities. Thus, a 
forward pass is performed, with samples never presented 
before, and the same error measure used during training is 
computed. Typically, the available samples are divided in 
two sets, one for training and the other for validation, 2/3 
for the former and 1/3 for the latter, respectively. 

In order to avoid numerical problems, all the features 
were previously normalized to the [0, 1] interval [1]. 

 
 
4. Experimental Results 
 
As stated before, our goal is to classify classical music 
into five subgenres: flute, piano, violin, choral and opera. 
These can be organized in a hierarchical manner, as 
depicted in Figure 2. The presented taxonomy is defined 
only for the sake of clarity: the practical classification 
performed was not hierarchical. 

We collected a database of 300 monaural musical 
pieces (60 for each genre), sampled at 22050 Hz, with 16 
bits quantization. For each piece, 6 seconds’ segments 
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were extracted, based on their relevance for the genre in 
cause, as stated in Section 2. 
 

 
Figure 2. Classical music genre classification. 

 
Our first goal was to discriminate between three 

genres of instrumental music: music for flute, piano and 
violin. The 6s’ segments extracted were chosen so as to 
include soles from each instrument by single or several 
players in unison, in isolation (monophonic segment) or 
with an orchestra in the background (polyphonic 
segment). For example, in the case of violin, we extracted 
a segment from  “Spring” in Vivaldi’s Four Seasons. 

In our second goal, we wanted to discriminate 
between genres of vocal music: chorals and opera.  
Typically, the musical pieces used for opera were vocal 
soles, essentially performed by tenors, sopranos and 
mezzo-sopranos (Callas, Pavarotti, etc.), whereas for 
choral music segments of simultaneous distinct voices 
were used without many of the stylistic effects used in 
opera (vibrato, tremolo). Many of the used pieces were 
also a cappela, i.e., only human voices, no instruments .  

Finally, our third goal was to discriminate between 
all of the five genres referred above. 

For the three problems addressed we used three-
layered FFNNs, trained in batch mode via the Levenberg-
Marquardt algorithm. Each network consists of 40 input 
neurons (one for each extracted feature) a variable number 
of hidden neurons (described below) and 2, 3 or 5 output 
neurons, according to problem under analysis. Both 
hidden and output neurons use sigmoid activation 
functions. Fo r training purposes, we used 40 pieces from 
each genre, whereas for validation the remaining 20 were 
used (a total of 200 pieces for training and 100 for 
validation). Special care was taken so that the training 
samples for each genre were diverse enough. 

Validation, i.e., classification of unknown pieces, 
was carried out under two different perspectives that we 
designate as percentage calculus rule 1 (PCR1) and 
percentage calculus rule 2 (PCR2). 

PCR1 
Under this perspective, a musical piece from a particular 
genre is well classified when the highest network output 
corresponds to that genre and its value is above or equal 
0.7 (recall that the network outputs values between 0 and 
1). In this situation, the piece considered is correctly 
classified, without any ambiguities. 

When all output values are under 0.7, it is concluded 
that this particular musical piece does not belong to any of 
the defined categories. The highest value is not high 
enough to avoid possible ambiguities.  

In order to improve class distinguis hability, we 
check, for each well-classified piece, if the second highest 
network output value is at least 0.2 below the highest one. 
For this purpose we define the “gn2 < 0.2” measure, 
which represents the percentage of pieces where the 
second highest value was less than 0.2 below the highest 
one. For instance, if a musical piece has a value of 0.8 for 
the right genre (highest value) and 0.65 for the second 
highest value, this particular piece will make part on the 
“gn2 < 0.2” measure. In this situation, it is concluded that 
this piece shows some ambiguity regarding those genres. 
 
PCR2 
In this case, a musical piece from a particular genre is well 
classified if the highest network output value corresponds 
to the right genre, regardless of its amplitude. 

We further define the “gn2 > 0.7” measure, which 
represents the percentage of wrongly classified pieces, 
where the correct genre corresponds to the second highest 
value, which is at least 0.7. The idea is to check if the 
piece is “almost” correctly classified. 

 
Below we present the results for each of the 

classification problems addressed. 
 
4.1. First Classification: Three Genres 
 
In this case, musical pieces were classified into flute, 
piano and violin pieces. 

For the determination of the most adequate number 
of neurons in the hidden layer, we tested several values in 
the range [10, 30]. The best classification results were 
obtained for 20 neurons in the hidden layer: an average 
classification accuracy of 83,3% for PCR1 and 85% for 
PCR2, for the three genres.  

Regarding PCR1 analysis (Table 1), we got 85% 
accuracy for flute, 80% for piano and 85% for violin. 
Analyzing the results for flute pieces, we also notice that 
5% of them were wrongly classified as piano, 5% as violin 
and 5% did not belong to any of the classes. We also see 
that the distance between the correct value and the second 
highest value was always at least 0.2 (“gn2 < 0.2” = 0%). 

classical music 

flute choral piano violin opera  

vocal instrumental 



 

PCR1 83,3% Flute Piano Violin 
Flute 85 10 5 
Piano 5 80 10 
Violin 5 10 85 
unclassif.    5 0 0 
gn 2 < 0.2 0 0 0 

Table 1. Instrumental music confusion matrix: PCR1. 
 

As for PCR2 analysis (Table 2), we got 90% 
accuracy for flute, 80% for piano and 85% for violin. For 
violin pieces, 10% of pieces were wrongly classified but 
the violin class was the second highest value, which was 
above 0.7 (“gn2 > 0.7” = 10%). 
 

PCR2 85% Flute Piano Violin  
Flute 90 10 5 
Piano 5 80 10 
Violin  5 10 85 
gn 2 > 0.7 0 0 10 

Table 2. Instrumental music confusion matrix: PCR2. 
 

By inspection of the classification errors, we noticed 
that they occur when the instruments are played in an 
unusual manner, not included in the training samples. For 
instance, two violin pieces were classified as piano, which 
had in common the fact of being extremely slow and 
having small amplitude variations. However, the output 
values for the violin class were high (above 0.7), which 
comes from the fact that the timbral features correctly 
detected the presence of violins. 
 
4.2. Second Classification: Three Genres 
 
In this situation, musical pieces were classified into opera 
and choral pieces. We obtained best classification results 
with 25 neurons in the hidden layer: an average 
classification accuracy of 90%, both for PCR1 and PCR2, 
for the two genres used. 

Regarding PCR1 analysis (Table 3), we obtained 
90% accuracy for c horal pieces and also 90% for opera.  
 

PCR1 90% Choral Opera 
Choral 90 10 
Opera 10 90 
unclassif.    0 0 
gn 2 < 0.2 0 0 

Table 3. Vocal music confusion matrix: PCR1. 
 

As for PCR2 analysis (Table 4), we obtained the 
same results: 90% accuracy both for opera and choral 
pieces. 

 

PCR2 90% Choral Opera 
Choral 90 10 
Opera 10 90 
gn 2 > 0.7 0 0 

Table 4. Vocal music confusion matrix: PCR2. 
 

Only two choral pieces and two opera pieces were 
not correctly classified. One of those choral pieces has 
some instrumental parts, unlike most of the training 
samples, which are a capella. Also, that particular piece 
has a female voice that clearly stands out, which the 
average human being could easily classify as opera. As for 
the two mistaken opera pieces, we could not find any clear 
reasons for that behavior.  The only conclusion we can 
draw is that the used features are good enough for the 
well-behaved cases. For more atypical situations, a more 
thorough feature analysis is required: elimination of 
redundant features and/or inclusion of necessary extra 
features. 

 
 
4.3. Third Classification: Five Genres 
 
Here, musical pieces were classified into the five 
categories listed before: flute, piano, violin, opera and 
choral music. Best classification results were obtained 
with 20 neurons in the hidden layer for PCR1, with 64% 
average classification accuracy, and 30 neurons for PCR2, 
with 76% average classification accuracy, for the five 
genres used. 

Regarding PCR1 analysis (Table 5), we obtained 
65% classification accuracy for flute pieces, 65% for 
piano, 70% for violin, 50% for chorals and 70% for opera.  
 
PCR1 64% Flute Piano Violin Choral Opera 
Flute 65 15 5 0 10 
Piano 10 65 0 10 0 
Violin 0 10 70 10 0 
Choral 15 0 5 50 0 
Opera 0 0 5 15 70 
unclassif.    10 10 15 15 20 
gn 2 < 0.2 0 10 20 5 15 

Table 5. Mixed classification confusion matrix: PCR1. 
 
As for PCR2 analysis (Table 6), the classification 

accuracy was 75% for flute pieces, 65% for piano, 85% 
for piano, 75% for chorals and 80% for opera. 

Though interesting, the results obtained for this more 
complex classification problem are less satisfactory. It is 
clear that the used features could not separate the five 
classes in a totally unambiguous manner. Therefore, a 



 

deeper feature analysis seems fundamental in order to 
obtain better results. 

 
PCR2 76% Flute Piano Violin Choral Opera 
Flute 75 20 0 10 10 
Piano 5 65 0 15 5 
Violin 0 5 85 0 0 
Choral 10 5 10 75 5 
Opera 10 5 5 0 80 
gn 2 > 0.7 0 5 5 0 0 

Table 6. Mixed classification confusion matrix: PCR2. 
 
 

5. Conclusions 
 
The main goal of this paper was to present a methodology 
for the classification of classical music. Although the 
results obtained are not sufficient for real-world 
applications, they are promising.  

In the most complex case, where we defined five 
categories, the classification results were less accurate. 
However, in our opinion, a hierarchical classifier, 
following the structure in Figure 3, would lead to better 
results. 

In the future, we will conduct a more thorough 
analysis of the feature space: detection and elimination of 
redundant features, as well as definition and utilization of 
other features, which may help to discriminate the more 
atypical cases. Additionally, we plan to use a broader and 
deeper set of categories, i.e., more basis classes and 
subclas ses. In case we use categories like waltz, rhythmic 
features, not used in the present work, will certainly be 
important. 
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